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ABSTRACT 

It is well recognized that the material properties 

in fiber reinforced components are strongly dependent on 

the fiber orientation.  In mold filling processes involving 

short fiber reinforced composites, fiber orientation occurs 

as a result of the flow induced stresses.  It is important 

to be able to predict this flow induced orientation. 

A numerical method has been developed previously 

to predict the in-plane fiber orientation in plane flow. 

This scheme is refined to enable predictions for fiber 

orientation in axisymmetric flow.  The numerical method 

is verified by comparing numerical and analytical solu- 

tions for fiber orientation in Poiseuille flow. 

The fiber orientation may be described by certain 

orientation parameters, which relate the degree of col- 

limation to the material properties.  These orientation 

parameters are incorporated into both the plane and axi- 

symmetric flow algorithms, thus providing a link to 

available structural analysis routines. 

11 



ÜX 

Several numerical examples of practical 

importance are presented.  A prediction for the fiber 

orientation near molded holes is established by determin- 

ing the fiber orientation resulting from flow around a 

circular inclusion.  In a further example, the process for 

molding an axisymmetric disk is simulated to determine the 

numerically predicted fiber orientation. 
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CHAPTER 1.  INTRODUCTION 

Composite materials are becoming widely used, 

especially for aerospace applications where stiff, strong 

lightweight materials are required.  However, traditional 

hand lay-up methods for fabricating composite materials 

are expensive and time-consuming and, hence, can only be 

used when increased structural performance outweighs cost 

requirements.  With the advent of less expensive fabrica- 

tion techniques, composites are becoming sound economic 

alternatives for many other applications. 

One promising inexpensive fabrication method is 

injection molding, a process in which a plasticized 

charge is forced under pressure into the cavity of a 

closed die where it (the charge) is formed into the 

shape of that cavity.  During this mold filling process, 

fiber alignment occurs due to fluid stresses induced by 

the flow.  Since the material properties and strength 

of the resulting component part are strongly dependent 

on the orientation of the fibers, it is essential to be 

able to predict this flow induced fiber orientation. 



An early attempt to predict flow-induced 

orientation was performed by Jeffery [9].  Jeffery devel- 

oped equations describing the motion of a single ellipsoi- 

dal particle immersed in a Newtonian fluid.  Goldsmith and 

Mason [7] have used Jeffery's equations to solve for the 

orientation of ellipsoidal particles in both Couette and 

hyperbolic radial flows.  Based on Goldsmith and Mason's 

predictions for orientation in hyperbolic radial flow, 

Goettler et al. [6] presented a new manufacturing concept 

for producing short fiber reinforcement in extruded rubber 

hoses in a one-step fabrication process.  Their idea was to 

alter the die design such that a constriction of the flow 

occurs at some intermediate point, followed by an expansion 

to form the dimensions of the final product.  In the region 

of expansion, fiber orientation occurs in the hoop direc- 

tion, thus providing the necessary reinforcement.  The work 

by Goettler et al. represents one of the early attempts to 

control the orientation in short fiber molded components 

based on analytical techniques. 

Givler [5] has developed a numerical method to 

predict in-plane fiber orientation in plane flow.  The 

method consists of solving the flow equations via the 

finite element method and, subsequently, numerically inte- 

grating Jeffery's equations to determine fiber orientation. 

Givler's work represents a first attempt to develop a 



general method for determining fiber orientation, although 

it is restricted to in-plane fibers in plane flow. 

Once the fiber orientation is determined, material 

properties may be predicted.  Using the "aggregate model," 

McCullough et al.[13] have shown that two orientation 

parameters are needed to relate the degree of orientation 

to the material properties for planar fiber orientation 

distributions, if the orientation distribution is symmetric 

about the mode of the distribution.  This mode orientation 

angle serves to isolate the local principal material axes. 

The first objective of this work is to determine 

the orientation parameters and mean orientation angle for 

the in-plane fiber distributions in plane flow from 

Givler's numerical orientation scheme, thus linking Givler's 

algorithm to available structural analysis programs to form 

a complete numerical system capable of evaluating the in- 

fluence of mold designs on the performance of molded parts. 

The second objective of this work is to determine 

fiber orientation in axisymmetric flow.  In the axisymmet- 

ric development, the assumption of planar orientation is 

lifted.  Again, the ultimate goal is to portray the fiber 

orientation in terms of orientation parameters.  A new set 

of orientation parameters is needed in view of the non- 

planar distribution assumption.  McGee [14] has determined 



that four orientation parameters are necessary to compute 

the material properties for non-planar distributions. It 

is these four orientation parameters which are determined 

in the axisymmetric scheme. 

The contents of this thesis are organized in the 

following manner:  Chapter 2 introduces Jeffery's orienta- 

tion equations and briefly summarizes the various assump- 

tions made in the development of these equations.  The 

analysis involved in determining fiber orientation from 

Jeffery's equations is then explained.  Chapter 3 reviews 

Givler's numerical method for determining the in-plane 

fiber orientation in plane flow, and introduces algorithms 

for determining the mean orientation angle and the orienta- 

tion parameters.  Several numerical examples are presented. 

Chapter 4 develops the numerical method for determining 

fiber orientation in axisymmetric flow and, subsequently, 

devises the scheme for computing the non-planar orientation 

parameters.  As in Chapter 3, several numerical examples 

are included.  Results and conclusions, as well as 

suggestions for further research, are presented in 

Chapter 5. 



CHAPTER 2.  GENERAL ORIENTATION EQUATIONS 

In this chapter, orientation equations developed by 

Jeffery [9] are incorporated to solve for fiber orientation. 

Jeffery formulated equations to determine the motion of a 

single rigid ellipsoidal particle immersed in a viscous 

fluid subject to the following assumptions: 

1. Apart from the local disturbance near the particle, 

the fluid motion is steady and varies in space on a 

scale that is large compared with the dimensions of 

the particle. 

2. The fluid which surrounds the particle is incom- 

pressible and Newtonian. 

3. The fluid velocity is low; hence, inertia terms may 

be neglected (creeping flow). 

4. The particle is non-sedimenting. 

A summary of Jeffery\s analysis is presented here. 

For details, the interested reader is referred to the 

original reference. 

One important conclusion drawn by Jeffery is that 



under the above assumptions, the particle ultimately 

attains the velocity of the fluid which it displaces»  This 

enables one to track the paths taken by particles simply by 

determining the flow streamlines. 

To solve for the particle orientation, a 
0   0    0 

rectangular Cartesian coordinate set of axes x^   , x2 , x3 , 

fixed in the particle, is defined such that the surface of 

the ellipsoid is described by the expression: 

. 0,2   , 0.2   ,0.2 
(x-,)    (x-)    (xj 1  +  *  +  t— = i 
h2     h2     b2 bl     b2     b3 

It is natural to determine the orientation of these axes 

relative to a set of axes x±   ,   x2   ,   x"3 fixed in direction 

whose origin lies at the center of the particle.  The rela- 

tive orientation between the two sets of axes is described 

by the three Euler angles.  If the particle is an ellipsoid 

of revolution, however, only two of the three Euler angles 

are needed to fully describe its orientation, as shown in 

Figure 2.1.  A fiber may be modelled as an ellipsoid of 

revolution. 

Jeffery found expressions relating the hydrodynamic 

torque acting on the particle to the spins about its axes. 

With the assumption of creeping flow, the torque vanishes, 

and by relating the spins about the axes to the Euler angles 



Figure 2.1 Fiber orientation relative to a coordinate 
system whose axes are fixed in direction 

for an ellipsoid of revolution, the following expressions 

result [7]: 

Jl       - -~ =  z,   -   z2  cos4>,   cot8,   -   z3   sincj^  cot91 

+  B -d,2  sin<j>,   cot0,   + d23  cos2tj)1 

+ d31  coscf^  cote^^ -   2(d22  ~  d33)   sin2*i (2.1) 

301 
= -   z2   sin<j>,   +  z,  cos<j>,   + B d,2  cose})-,   00329-^ 



+ ~  d23 sin2cj), sin291 + d31 sincf^ cos 2&1 

+ -j(d22 ~ d33^ cos2(i>i  sin201 

+ l(d22 + d33> Sin29l 
(2.2) 

where z. and d.. are the respective components of vorticity 

and rate of deformation defined by 

*i = I(Vj - *j,k> eijk 

dij =I(»i,j +«j,i> 

and B is a function of the particle aspect ratio, r  , 

given by 

B = -E 

2  i r_ - 1 

r2 + 1 P 

where r = b,/b~ p   1' 2 

It is desirable to determine the orientation 

relative to an inertial reference frame since the fluid 

kinematics are most naturally defined relative to a fixed 

reference frame.  For this purpose an inertial Cartesian 

coordinate system x, , x„ , x, is introduced such that each 

x. axis points in the same direction as the corresponding 

x. axis.  Obviously, the orientation of the particle axes 

relative to the inertial frame can be described by the same 



Euler angles,   <f>,   and  6,   ,   used to describe the axes 

relative to  the x,   ,   x~   ,   x3  system.     In this  new coordi- 

nate  system,    (2.1)   and   (2.2)   are  transformed to 

D<j)] 

DF =  z,   -   z-   cost}),   cot8,   -   z3  sin«}),   cot9. 

+ B -  d,~  sin<j>,   cot8,   + d23 cos2t}>. 

+ d,,   cost}),   cot8,   -   2-(d22  -  ^33)   sin2cj>. 

=r— = - z~ sintj), + z-, costj), + B d,~ cost}), cos20. 

(2.3) 

+ -^ d2-, sin2tj), sin28, + d,, sin<f>, cos28. 

+ -r(d22 - d33) cos2<}>, sin20. 

+ 7(d22 + d33) sin291 (2.4) 

where iü- = 1|) + „  9U + „  3Q + u. 3( i 
Dt 3t 1 3x1   "2 3x2    3 3x3 

and z. and d.. are components of the vorticity and rate of 

deformation tensor relative to the x, , x2 , x3 coordinate 

system.  Equations (2.3) and (2.4), or (2.1) and (2.2), 

enable one to fully determine the orientation of a fiber in 

flow fields under the restrictions stated above. 

One final limitation of the above equations is that 

they were developed for a single particle; hence, they do 

not account for particle interactions in a fluid containing 
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many particles.  Indeed, in typical mold filling 

operations, fiber volume fractions of 30-40% are common 

and fiber interations may become very significant.  However, 

the analysis involved in dealing with such interactions is 

at the present time intractable; therefore, such inter- 

actions are not treated in this work. 

2.1    Use of Jeffery's Equations to Determine Fiber 

Orientation 

Upon inspection of (2.3) and (2.4), one notices 

the existence of vorticity and rate of deformation com- 

ponents.  These components must first be determined and 

substituted into Jeffery's equations, which are then 

integrated to obtain the fiber orientation. 

The solution to the flow equations must satisfy 

conservation of mass and momentum requirements, along with 

the constitutive approximation for the fluid.  Conservation 

of mass and momentum are universal laws applicable to all 

fluids, but the constitutive relation is merely an approxi- 

mation for modelling the behavior of each specific fluid. 

In this work, the "fluid" consists of a Newtonian fluid 

containing a concentration of suspended fibers.  For a low 

volume fraction of fibers, the influence of the fibers on 

the behavior of the overall fluid is minimal, and the 
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Newtonian constitutive assumption is valid.  However, a 

larger concentration of fibers exerts a considerable in- 

fluence on the constitutive behavior of the suspension. 

Maschmeyer and Hill [10] have shown that when a high concen- 

tration of 3 mm fibers is mixed in a Newtonian fluid, the 

suspension becomes highly pseudoplastic.  Thus a power law 

constitutive assumption appears valid for suspensions of 

high concentration. 

The degree of orientation of the fibers can also 

be expected to have an influence on the constitutive prop- 

erties of the suspension.  One certainly anticipates dif- 

ferent constitutive behavior in regions where fibers are 

highly aligned than in regions of random orientation.  To 

include this effect, however, the relationship between 

viscosity and degree of orientation must first be deter- 

mined.  Thereafter, an iterative procedure is needed since 

the fluid mechanics has an effect on fiber orientation 

which in turn alters the fluid mechanics.  However, for 

the remainder of this work, the vicosity dependence on 

fiber orientation is neglected. 



CHAPTER 3.  PLANE FLOW 

This chapter deals with in-plane fiber orientation 

in plane flow.  Numerically, the flow equations are 

easier to solve in plane flow since the flow is two- 

dimensional.  Also, the fiber orientation equations sim- 

plify considerably, and in special cases, can be solved 

analytically.  In Section 3.1, the appropriate simplifica- 

tions are introduced into the fiber orientation equations. 

Furthermore, it is shown that in-plane fibers maintain 

their in-plane orientation and one of the orientation 

equations is eliminated.  Section 3.2 present an analyti- 

cal solution for fiber orientation in plane Poiseuille 

flow.  This solution provides a basis for checking the 

numerical scheme.  The numerical method is developed in 

Section 3.3.  The orientation parameters which relate the 

degree of orientation to the material properties are in- 

troduced in Section 3.4 and a method for determining them 

as well as the mode of the distribution in terms of the 

orientations of a finite number of fibers is presented. 

Finally, in Section 3.5, a number of numerically deter- 

mined solutions are presented.  To check the numerical 

scheme, the fiber orientation in plane Poiseuille flow is 

12 
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evaluated and the results are compared with the analytical 

solution in Section 3.2.  Also, the fiber orientation in 

flow around a circular inclusion in both finite and in- 

finite width channels is determined.  The latter examples 

are of pragmatic importance because they provide predic- 

tions for the orientation around molded holes. 

3.1    Orientation Equation for In-Plane Fibers in 

Plane Flow 

Consider plane flow in which variations in the 

x, coordinate direction may be ignored.  For this type of 

flow, several of the vorticity and rate of deformation 

tensor components are identically zero: 

z. = 
i 

0 

0 

aij ■ 

0 0 

0 d22 d23 

0 d23 d33 

Inserting the appropriate simplifications into Equations 

(2.3) and (2.4) one obtains: 
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D*1 
5t~=z1  + Bfd23  cos2$i   ~ Js(d22-d33)sin2(j)1] (3.1) 

D91  B ^r—= f[2d23 sin24). sin261 + (d22-d33)cos2cj).. sin29;L 

+ 3(d22+d33)sin291] (3.2) 

Equation (3.1) clearly indicates that the in-plane response 

of a fiber is independent of the out-of-plane orientation. 

If one considers fibers initially oriented in the plane 

of the flow (9,=ir/2) , then equation (3.2) reduces to gt- = ° 

which indicates that a fiber remains in-plane.  The re- 

mainder of this chapter deals exclusively with in-plane 

fibers; hence, only the single differential equation (3.1) 

needs to be solved to completely determine the fiber 

orientation. 

It is worthwhile to note for later reference that, 

under the above simplifications, Equations (2.1) and (2.2) 

reduce to the single differential equation: 

3*i -   - 
jz±  = z1 + B[d23 cos2<j>1 - J2(d22-d33)sin2c()1] (3.3) 

Although the above assumptions have considerably 

simplified the analysis, (3.1) and (3.3) are still 
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extremely difficult to solve analytically except for some 

very simple flows.  The next section deals with a flow 

where an analytical solution does exist.  Thereafter, a 

procedure is developed for numerically determing fiber 

orientation for more complicated flows. 

3.2    Fiber Orientation in Plane Poiseuille Flow - 

Analytical Solution 

Consider the pressure-driven, steady,creeping 

flow of an incompressible Newtonian fluid through a rec- 

tangular channel of very large aspect ratio as shown in 

Figure 3.lt where the flow is in the x3 direction.  The 

ratios H/w and H/L are small compared to unity and thus 

in regions away from the edges of the channel, the veloc- 

ity variations occur only in the x2 direction.  The fiber 

orientation in this fully developed region is to be 

determined. 

Under conditions of unit flow, the normalized 

velocity profile is 

u3 = 2(1 " -p 

ux = u2 = 0 
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x3=L 

x, = 0. 

Figure 3.1 Geometry for plane Poiseuille flow 

and the components of the vorticity and rate of deforma- 

tion are computed to be 

' if' 
2 

z. = i 0 • 

0 



17 

dü = 

0  0   0 

o o  %r 

o hv   o 

du~        2 
where r = ^ = -3x2/H 

Substituting into Equation (3.1), one obtains 

mr + u3-3^ - rr^(rp cos *i + sin +i> 
p 

(3.4) 

If one deals with fibers entering the domain perpendicular 

to the flow streamline (ie, $^=0. at x3=0), then j^- = 0 and 

(3.4) reduces to 

d4>i                 v ~?       2 2 
.—L =  L.    (r    cos'i   + sin  <}>,) 
dx3  u3(rp

2
+l)   

P     X       X 

and the resulting solution is 

rx3/u3 
tan <J)1 = r^ tan r +i/r "1  ^p 

P   P 

or 
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tan <j), = r tan 
2x2X3 

(H2-X2)(rp+l/rp)_ 
(3.5) 

Assuming a fiber aspect ratio of 50, the fiber orientation 

is plotted in Figure 3.2 for H=l.  One immediate observa- 

tion to be made from the figure is that a distinct layer 

of fibers aligned parallel to the streamlines exists near 

the wall boundary.  This alignment correlates well with ex- 

perimental observations of fiber alignment near wall bound- 

aries in short-fiber injection molded components. 

Having attained an analytical solution, one may 

now proceed to develop a numerical scheme to predict fiber 

orientation.  The known analytic solution in this section 

can be used to check the accuracy of the numerical method. 

3.3    Numerical Method 

Except for very few simple flow geometries, 

Equation (3.1) cannot be solved by analytical methods. 

However, one may wish to determine fiber orientation for 

complicated flow situations which exist in many molding 

processes.  With this motivation, the necessity to develop 

a numerical scheme to determine fiber orientation is ob- 

vious.  The majority of the material covered in this sec- 

tion was previously developed by Givler [5]. 
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As mentioned previously, the first step in solving 

for fiber orientation is to obtain the flow field. . 

The finite element method has been used extensively in 

the literature to solve fluid mechanics problems with ex- 

cellent results and consequently, is incorporated in this 

work.  The details of the method employed herein are fully 

described in References 2 and 5.  The analysis.utilizes 

the six-node triangular element shown in Figure 3.3 to 

solve the plane and, later, axisymmetric  flows.  In the 

finite element analysis, the continuity, momentum, and 

constitutive equations are reduced to a set of algebraic 

equations via the Galerkin method and after solving this 

system of equations, a discretized solution is obtained. 

From the discretized solution for the fluid 

mechanics, it remains to determine the fiber orientation. 

This is accomplished by determining the orientation of 

individual fibers as they traverse the flow streamlines. 

4  2 

Figure 3.3 Six-node triangular element 
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Obviously, unless some collimation is evident, one 

cannot know precisely the initial orientations of all fi- 

bers.  Indeed, if the initial orientations were known, it 

would not be feasible to track each fiber through the do- 

main.  An alternative approach is to select a number of 

streamlines which sensibly cover the domain in which the fi- 

ber orientation is to be determined.  Then a finite number 

of fibers of varying initial orientations are allowed to 

traverse each streamline, and the orientation of each fiber 

is computed at various locations along the streamline. Thus 

information is obtained about the dispersion of fibers as 

well as the principal direction of orientation,  usually, 

an initially random orientation distribution is input.  A 

random distribution will be defined in a later section. 

To find the streamlines, one must first determine 

the stream function, ij>.  From the numerical solution, 

the stream function values are known at the nodal 

points as shown in Figure 3.4.  To isolate a streamline, 

the finite element grid is scanned element by 

element to identify nodal points having the particular 

values of the stream function, ^Q , corresponding to the 

streamline.  However, except in rare circumstances the 

streamline will not intersect an element boundary exactly 

at a nodal point.  Therefore, linear interpolation is used 

to determine the locations at which the streamlines 
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Element nodal points 

streamline 

Figure 3.4 Determination of streamlines from numerical 
fluid mechanics solution 

intersect the element boundaries.  After scanning every 

element, a collection of coordinates is obtained which 

corresponds to locations where the streamline crosses the 

element boundaries.  These points must next be placed in 

order, which is accomplished by noting that if a streamline 

crosses an element boundary, it must cross a second bound- 

ary in the same element.  Thus, given the initial point of 

the streamline, shown as P in Figure 3.4, the neighbor to 

this point, P, , can be determined since it lies on a 

boundary to the same element.  But P1 is also a point of 

intersection for a second element.  In fact, all stream 

points, with the exception of the first and last, mark 

the intersection of the streamline and the boundary of 
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two elements.  Having found the second element containing 

p  , the next neighbor, P2 , may be found since it lies 

in the same element as P1 .  This procedure continues un- 

til all the stream points are arranged in order, forming 

the streamline. 

In the exceptional case where a streamline crosses 

an element boundary at a corner node, the stream point 

marks the intersection of the streamline and more than two 

elements (see Figure 3.5).  However, simply disregarding 

the elements which the streamline does not pass through 

results in the stream point l?eing contained by just two 

elements. 

Having formed the strealines, it remains to 

numerically determine the orientations of fibers at se- 

lected locations along each streamline.  To do this, the 

coordinate system whose axes remain fixed in direction and 

translate along the fiber center (the x1 , x2 , x3 axes 

in Figure 2.1) is adopted, and Equation (3.3) can be used 

to determine the fiber orientation relative to this sys- 

tem.  The advantage of working with (3.3) is that differ- 

entiation is with respect to a single variable, time.  To 

illustrate the procedure for integrating (3.3), suppose 

the initial fiber orientation is given at point PQ in 

Figure 3.4 and the fiber orientation at location P1 is 
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\v   Element 4 ^v Element8 

i 

Element 3^.    Ele™rvtj^>^ P4 

■^streamline 

..-^r""      '        P2  NyElement 6 
n  \. Element 2         \. 

» 

Element 1   \. 
o • ->i 

Element oN. 

Figure 3.5  Streamline crossing corner node 

desired.  The time required for a fiber to travel from P 

to P, can be estimated by dividing the distance from P 

to P, by the velocity at P  .  This sets the time increment 

for evaluation of the fiber orientation in (3.3).  The 

vorticity and rate of deformation components are approxi- 

mated as constants over the length of the element equal 

to those values computed at P  .  With these approxima- 

tions, a numerical differential equation solver using the 

Runge-Kufcta-Verner fifth and sixth order method is adopted 

to solve (3.3).  The differential equation solver is a 

subroutine available from International Mathematical and 

Statistical Libraries.  The fiber orientation at subse- 

quent stream points is obtained in an analogous manner. 
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The stream points provide an effective sampling region in 

which to plot fiber orientation provided that the elements 

are appropriately sized. 

Under the above procedure for determining fiber 

orientation, it is obvious that the finer the mesh used, 

the more accurate the solution provided roundoff errors do 

not become significant.  Questions of convergence of this 

scheme were addressed by Givler [5} who showed that this 

method yields  sixth order convergence. 

3.4    Orientation Parameters for Planar Fiber 

Distribution 

To this point, the methodology for obtaining the 

orientations of individual fibers at discrete locations in 

the flow field has been developed.  The number of locations 

containing prescribed fiber orientations depends on the 

fineness of the mesh and the number of streamlines.  If 

fibers of varying initial orientations are input at the 

beginning of each streamline then an orientation distri- 

bution will result at locations downstream.  It is well 

known that the material properties of a fiber-reinforced 

component are strongly dependent on the degree, as well 

as, the direction of fiber orientation.  Since the ulti- 

mate interest is in determining material properties, it 

is necessary to develop parameters relating the degree of 
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orientation to the material properties. 

In a given region, the distribution of fibers may 

be described by an orientation density function, n.  For a 

planar distribution of fibers (see Figure 3.6), the orien- 

tation density is a function of the single angle, <(>. ; viz, 

n = n((f>1) 

The orientation density function is periodic with 

period ir since the angle $-   + -n  depicts the same 

orientation <j),; hence, 

n(t}>1) = n((J>1+ir) 

It is essential to confine <j>- to lie within an interval 

equal to ir which isolates one period in the orientation 

density function. 

For a symmetric orientation distribution about 

the mode, <J>° , such as the distribution in Figure 3.7, one 

intuitively expects local orthotropic material properties 

with the mode angle defining a principal material direc- 

tion.  The validity of the symmetric distribution assump- 

tion is investigated for a real flow situation in Appendix 

1, where it is determined that the symmetry assumption 
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Figure 3.6 Planar fiber distribution 

is valid.  With this symmetry the orientation density 

function is normalized such that 

4>5+TT/2 

n(<j)1)d<j)1 = 1 (3.6) 

In an interval centered at the mode, the mean, <<£>,■ and 

the mode are equivalent. 

McCullough et al. [13] have developed a technique 

for relating the microstructure in a short-fiber composite 

material to its material properties, which utilizes the 

concept of the "aggregate model."  The microstructure is 

modelled as a collection of subregions, or grains, of 
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n(<M 

StTT    <£ 

Figure 3.7  Symmetric orientation distribution about the 
mode 

microlaminates of aligned fibers.  McCullough assumed a 

symmetric distribution about the mode and introduced a new 

angle 5 which is measured from the mode (see Figure 3.8). 

Figure 3.8 Orientation density as a function of ? 
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Obviously,   $,   and  r,  are  simply related through 

5 = 4>i-4> in (3.7) 

Under this model, the material properties are related to 

the dispersion through two parameters,  f and g  , defined 
P hr 

by 

f = 2<cos z,> -  1 
hr 

(3.8) 

(3.9) gD = -|[8<cos ?> - 3] 

TT/2 

where <cosm?> = I   n(c) cosm? d<;.  The orientation param- 

eters are constructed such that the degree of collimation 

can readily be interpreted.  For f = g = 1, the fibers 

are perfectly aligned, whereas f = g = 0 signifies a 
hr P 

random distribution.  Intermediate values of f  and g 

represent partial degrees of orientation.  The orientation 

parameters may be expressed in terms of (f>. by substituting 

(3.6) into (3.9) and (3.10): 

CJ)|4-TT/2 

E     -   2[ n(t}>1)cos   (tj>1-(})°)d(j>1   - 1 (3.10) 

4)£+TT/2 

*i 
n((j)1)cos   (4>1-cj)=*)d(j)1-3 (3.11) 
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In order to obtain the orientation parameters from a dis- 

tribution in <j>. , the mode, <j>? , must be determined. 

In this work, an orientation density function is 

not explicitly developed; rather, the orientations of a 

finite number of fibers are determined, as explained pre- 

viously.  Hence, the orientation parameters must be ex- 

pressed in terms of a finite number of fibers; this is 

accomplished in the next section.  The subsequent section 

is concerned with the evaluation of $5   . 

3.4.1  Determination of the Orientation Parameters 

from the Orientations of a Finite Number of Fibers 

To be compatible with the numerical fiber 

orientation scheme developed earlier, the orientation 

parameters must be expressed in terms of the orientations 

of a finite number of fibers. 

To determine the appropriate expression for f  , 

one begins by dividing the integral in (3.10) into a 

finite number of intervals and approximating the behavior 

over each interval via 

,*l+*/2       , k , 
n((j)1)cos ((j)1-(j)°)d(|)1 a^E n[(cf)1)i]cos':[(<f)1)i-({)|]A(})1 

$1 i=l 
(3.12) 
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where k is the number of intervals and (*1)i is the average 

value of <{>, in the i  interval.  Defining m. as the num- 

ber of fibers whose oreintations lie in the i  interval, 

it can be determined from the normalization condition 

(3.6) that 

m. 
^ = n[i^1)i)^1 (3-13) 

where N is  the total number of  fibers.     Substitution of 

(3.13)   into   (3.12)   yields 

4>|4-TT/2 k 

n((i)1)cos2((|)1-(j)°)d(j)1   a  I_E micos2[(<j)1)i-(|)°] 

or  equivalently, 

*1+1T/2 , n   N 1 „ ___2,,   xa, (3.14) 

<$>{ 
n((()1)cos*(<|)1-<|)£)d<(>1 2-1 cos (^ _-<()£) 

where <j>,  represents the orientation of the j   fiber. 
j 

Substituting (3.14) into (3.10) , one obtains 

o     N    9 
f  s | E cos^.. -c}>°) - 1 (3.15) 
p    i=l    l  i 
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which is the desired expression relating f to the orien- 

tations of a finite number of fibers. 

Following an analogous procedure, the following 

expression for g may be determined; 

1 
gp = 5 

8 N   4 
£ Z  cos4 (<().. -cj>°)-3 (3.16) 

The expressions  (3.15) and (3.16) are summarized in 

Table 3.1 for ease in reference. 

With the above definitions of the orientation 

parameters,a random fiber distribution may be modelled 

from a finite number of fibers by adjusting the fiber 

orientations such that f = g = 0. p  ^p 

Inspection of (3.15) and (3.16) reveals that the 

mode, <j>? , must be determined to compute the orientation 

parameters.  The next section develops a method for deter- 

mining the mode in terms of the orientations of a finite 

number of fibers. 
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Table 3.1 

Orientation Parameters Expressed in Terms of the 

Orientation of a Finite Number of Fibers 

2 N   2 
f = | Z cos^(cf>, -<J>,°) - 1 
P  Ni=l     Xi     X 

gP = 5 
| I  cos4(*, -<{>°)-3 
Ni=l     1i- X     _ 

3.4.2  Computation of the Mode 

For a continuous distribution function, the 

computation of the mode angle is quite straightforward, 

One simply applies the definition of the mode: 

dn ($.,_) 

d<j). 
= 0 

*!-♦£ 

Alternatively, in the case of symmetric distributions 

about the mode, the mode is equivalent to the mean in an 

interval centered about the mode; viz. 

*i 
<J)°+TT/2 

*1 

$  n(<j> 1)d4>1  =  <*2> 
-IT/2 

(3.17) 
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The condition (3.17) is easier to apply when dealing with 

distributions described in terms of the orientations of a 

finite number of fibers.  The procedure to determine <f>° 

using (3.17) is illustrated for continuous distributions 

and then extended to include distribution in terms of a 

discrete number of fibers. 

Consider the continuous distribution in Figure 

3.7.  In order to determine the mode via (3.17), the 

period centered at the mode must be established.  But 

this interval is unknown until the mode itself is deter- 

mined.  Hence, an iterative procedure is necessary where 

a mean is calculated based upon an initial guess for the 

interval.  A new interval centered around the calculated 

mean is established, from which a new mean is calculated, 

leading to a new interval.  The procedure continues until 

the difference between successively calculated mean 

values lies within some tolerance requirement.  To illus- 

trate the iterative scheme, the mode for the distribution 

in Figure 3.8 is determined iteratively in Figure 3.9. 

These ideas are easily extended to cover 

distributions described by the orientations of a finite 

number of fibers.  Consider, for example, the distribution 

depicted by the four fibers in Figure 3.10.  Within the 

range 0 <_ <j>1 <TT, the orientations of the four fibers are 



0      <4>|>| Ti- 
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Figure  3.9 Determination of the mode via the iterative 
procedure.  In (a) the mean angle, «$>i>i,   is 
calculated in the interval (0,TT).  A new inter- 
val centered about <<j>1>j: is established in (b) 
from which a new mean, <<j>]_>2' is determined. 
This procedure continues until a close estimate 
for the mode is established in (d). 
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Figure 3.10 Determination of the mode from the 
orientations of a finite number of fibers 
via the iterative procedure 
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0.05iT, 0.15TT, 0.25-n- and 0.95IT.  Calculating the mean, ^ 

from the standard definition 

1 N 

i=l xi 

where N is the total number of fibers and <j>1  is the 

th j 

orientation of the j   fiber,one obtains the mean angle 

depicted in Figure 3.10(a).  Centering a new interval 

about the computed mean angle, the orientation of one 

of the fibers changes from 0.95TT to -0.05ir and a new mean 

results, which is shown in Figure 3.10(b).  A further 

iteration does not change the mean value. 

3.5    Numerical Solutions 

In this section the numerical method is used 

to solve several example problems.  The fiber orienta- 

tion in plane Poiseuille flow is determined first, 

and the results are compared with the analytical solution 

developed in Section 3.2.  Thereafter, several examples 

of pragmatic interest are presented. 

3.5.1   Plane Poiseuille Flow 

Consider again the wall-bounded, steady, 
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Newtonian flow in Figure 3.1.  The analytical solution for 

the orientation of fibers initially perpendicular to the 

wall boundaries has been determined in Section 3.2.  In 

the present example, the fiber orientation is determined 

numerically. 

As previously stated, the first step in the 

numerical scheme is to solve the flow equations via 

the finite element method.  Figure 3.11 depicts the finite 

element mesh and associated boundary conditions incorpo- 

rated to solve the flow problem.  Newtonian constitutive 

behavior is assumed. 

The fluid mechanics results are presented in the 

form of contour plots.  Stream function, pressure, and 

vorticity contours are plotted in Figures 3.12 through 

3.14, respectively.  It is, of course, possible to calcu- 

late these quantities analytically for this simple flow. 

Comparing the contour plots with the analytical solutions 

reveals that the numerical flow solution is 

accurate. 

With the discretized solution to flow equations 

at hand, the fiber orientation may be determined.  In 

Table 3.2, a comparison is made between the numerical and 

analytical solutions for the orientation of a fiber ini- 

tially perpendicular to the wall boundary traversing the 
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streamline which traces the path x2 = 0.6.  It is seen 

that the numerical results compare favorably with the 

analytical predictions. 

Table 3.2 

Comparison of Analytical and Numerical Solutions 

in Plane Poiseuille Flow at x?=0.6 for a 

Fiber Initially Perpendicular to the 

Wall Boundary 

1 analytical,        ±  numerical, 
x3 rad rad 

0.5 -0.753 -0.785 

1.0 -1.08 -1.11 

1.5 -1.23 -1.25 

It is of interest to determine contours of the 

mode and orientation parameters for this flow.  However, 

one must first determine the number of fibers needed to 

adequately portray the orientation distribution.  This 

question is addressed in Appendix 2 where it is determined 

that as few as ten fibers give good estimates for both 

the mean fiber angle and orientation parameters. 

A fiber plot, shown in Figure 3.15, reveals 

information about the direction of orientation, as 

well as,the degree of fiber alignment.  It is readily 
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observed from the figure that a high degree of alignment 

is obtained in the wall region with the direction of 

collimation parallel to the wall.  Near the centerline, 

the orientation is nearly random.  These observations are 

reinforced in the mode angle and orientation parameter 

contour plots presented in Figures 3.16 through 3.18. 

Fiber alignment in the wall region in short-fiber molded 

components is a well known phenomenon. 

It should be noted that, in the mode angle contour 

plot, contours are not plotted in highly dispersed regions 

(i.e., f <0.4) since the fibers do not have much direction- 
P 

ality in these highly dispersed areas.  The contours in 

the more oriented regions are easier to interpret since 

the "noise" imparted by plotting the contours in the dis- 

persed regions has been eliminated.  This condition is 

applied to all future mode angle plots. 

3.5.2  Flow Around a Circular Inclusion in a Finite 

Width Channel 

A problem of more pragmatic interest is the 

determination of fiber orientation in the region around 

a molded hole in a short-fiber injection molded component. 

The flow geometry consists of a finite width channel with 

a centered circular inclusion.  In this example, the ratio 

of channel width to inclusion diameter is 10:1.  The 
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finite element mesh and boundary conditions to determine 

the flow solution are depicted in Figure 3.19.  Newtonian 

behavior is assumed. 

The boundary conditions require explanation. 

Along the solid boundaries (i.e., the wall and inclusion 

boundaries), the normal no slip condition is assumed.  On 

the centerline, adjacent to the inclusion, the shear stress 

and the x2 component of velocity are both equal to zero. 

At the input and exit boundaries of the flow, it is assumed 

that the fluid is far enough away from the inclusion that 

the flow is unaffected by it; hence Poiseuille flow exists 

along these boundaries. 

The resulting stream function, pressure, and shear 

stress contours are plotted in Figures 3.20 through 3.22, 

respectively.  Here, an analytical solution is not avail- 

able, thus one must be guided by intuition in interpreting 

the fluid mechanics solution.  Inspection of the contour 

plots (especially the stream function contours) reveal 

that the flow solution is reasonable. 

One next determines the fiber orientation.  Guided 

by results in Appendix 2, ten randomly oriented fibers 

are input at the beginning of each streamline.  The re- 

sulting orientation parameter and mode angle contours are 

depicted in Figures 3.23 through 3.25.  Several interesting 
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observations can be made from these plots: 

1) As before in the Poiseuille flow example, 

a distinct boundary layer of aligned fibers 

exists in the region near the wall. 

2) A second boundary layer of collimated fibers 

is present resulting from flow around the 

insert.  Downstream from the insert there is 

no mechanism available to misalign the fibers; 

consequently, the boundary layer propagates 

downstream. 

3) A core of random fibers exists between the 

two boundary layers. 

It has been mentioned previously that the presence 

of fibers leads to pseudoplastic fluid behavior, which may 

be portrayed by a power law constitutive assumption. 

Figures 3.26 through 3.34 present orientation parameter 

and mode angle contours for various power law indices 

under unit flow conditions.  The primary observation to 

be made is that lowering the power law index leads to a 

larger core of random fibers. 

3.5.3  Flow Around a Circular Inclusion in an Infinite 

Width Channel 

In the previous example, the wall boundary played 

an important role in determining the fiber orientation. 
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One may wish to investigate the fiber orientation in a 

channel of infinite width, thus isolating the inclusion as 

the sole mechanism for orienting the fibers. 

The finite element mesh and associated boundary 

conditions to determine the flow field are. presented 

in Figure 3.35.  Newtonian behavior is assumed.  This ex- 

ample presupposes a constant unit far-field velocity pro- 

file.  The left,right, and top wall boundaries are placed 

far enough away from the insert that the far-field velocity 

profile exists at these outer boundaries.  The resulting 

stream function, pressure, and shear stress contours are 

depicted in Figures 3.36 through 3.38, 

Having ascertained the flow solution, the fiber 

orientation is determined.  Orientation parameter and mode 

angle contours are presented in Figures 3.39 through 3.41. 

These figures show clearly the expected presence of a 

boundary layer of aligned fibers resulting from flow over 

the inclusion. 
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CHAPTER 4.  AXISYMMETRIC FLOW 

Having developed and demonstrated the numerical 

method for determining fiber orientation in plane flow, 

attention is now turned to the determination of fiber 

orientation in axisymmetric flow.  Defining a cylindrical 

coordinate system as shown in Figure 4.1, it is known from 

the assumption of axisymmetry that the 9 direction veloc- 

ity as well as the variation of the r and z direction 

velocities in the 0 direction of the fluid are identically 

equal to zero.  Consequently, the axisymmetric flow case 

represents a two-dimensional flow regime, and the method 

developed to predict fiber orientation in plane flow is 

applicable to axisymmetric flow.  However, the fiber 

orientation equations have to be developed under the axi- 

symmetric simplifications.  This is accomplished in 

Section 4.1.  Furthermore, in this chapter, the assumption 

of planar fibers is lifted, necessitating the development 

of a new set of orientation parameters.  This topic will 

be discussed in Section 4.3.  The analytical solution for 

fiber orientation in Poiseuille flow is determined in 

Section 4.2 and is compared with the numerical solution 
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Figure 4.1.  Cylindrical coordinate system 

in Section 4.4.  One final example, the fiber orientation 

in a simulated disk molding operation, provides a practical 

illustration of the numerical solution technique. 

4.1 Fiber Orientation Equations in Axisymmetric Flow 

To take full advantage of the simplifications 

induced by axisymmetry, modifications must be introduced 

into the fiber orientation equations.  One can make use 

of the axisymmetric simplifications if the fiber orienta- 

tion is described relative to a cylindrical reference 

frame as opposed to the Cartesian reference frame in 
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Figure 2.1.  The most judicious choice of a cylindrical 

reference frame appears to be the one shown in Figure 4.2, 

With this choice, the angle 61 is preserved; it becomes 

x',z(=y3) 

Figure 4.2.  Cylindrical reference frame and orientation 
angles for describing fiber orientation in 
axisymmetric flow 



-3 
the angle between the fiber and the y  (or z) axis.  To 

avoid confusion, it is renamed as 3•  A new angle a is 

defined as the angle between the r axis and the projection 

— 2 — 3 
of the fiber on the x -x plane in a plane containing the 

fiber and the z axis.  Reference to Figure 4.1 reveals 

that 

where 8 is the cylindrical coordinate angle.  For the 

analysis that follows, the cylindrical coordinates are 

-1  -2     -3 defined as y , y , and y where 

y = r 

y  = 8 

-3 y = z 

Referring to Figure 4.2, it is seen that the 

cylindrical coordinates (y1) are related to the Cartesian 

coordinates (x ) by 

-1  -3 x = y 

-2   -   -   -1   -2 x = rcosö = y cosy 

-3   - . -  -1.-2 
x = rsin9 = y smy 
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From the above relations, the following partial derivatives 

are easily evaluated: 

fix1  n ox1  A Ox1 

IS1' 
u 

s?2 
= U -3 " l 

6Y 

Sy1 

-2 cosy 652 

«y2 
= -y siny 6% = 0 

6yJ 

«;3 

«f1 
. -2 siny &3 

*y2 
-1  -2 = y cosy ^^ = 0 

5y3 

(4.2) 

The partial derivative terms above are needed for tensor 

tranformations which will be performed later in the anal- 

ysis. 

To obtain the necessary equations to solve the 

fiber orientation in axisymmetric flow,  it is necessary 

to transform all the vorticity and rate of deformation 

components in Jeffery's equations (2.1) and (2.2) to 

their respective components in cylindrical coordinates. 

To do this, one must determine the tensor character of 

the vorticity and rate of deformation components and then 

transform these quantities according to the usual rules 

of tensor transformation.  Having transformed the tensor 

quantities, they are then converted into physical 

components. 
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Dealing first with vorticity components, it is 

known by definition that 

zi = 2eijkwkj 

where e.., is called the permutation symbol and defined by 
X3 & 

■ijk 

0 if any two indices are equal 

1 if i,j,k are distinct and in cyclic 
order (i.e., 123 or 231 or 312) 

-1  if i,j,k are distinct but not in cyclic 
order (i.e., 132 or 213 or 321) 

Thus, 

51 = ^(a)32 ~ u23} 

z2  = %<w13 - ü.31) (4.3) 

z3  = h(^21   -  o.12) 

where ü is the second order vorticity tensor defined by 

5il = *(vi,j " VJ,i) 

From this definition it is obvious that OJ^. = -w - and, 
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hence, Equations (4.3) simplify to 

z1 = -w23 

z2  =  ä13 (4.4) 

z3  = -ü12 

Now, the vorticity terms in (2.1) and (2.2) are Cartesian 

components and thus can represent covariant, contravariant 

or physical components since no distinction is made in the 

Cartesian system. Since the partial derivatives (4.2) are 

known, the vorticity terms are chosen to transform as con- 

travariant components via 

-aß,-.   6x  6x -I]--. ,, c\ 00   (x)  =  : r U) J (y) (4.5) 
6yx 6y3 

Using (4.2), (4.4), and (4.5) one can compute z,(x) 

z^x) = z (x) 

■u23(x) 

4! «§! öii3 (y, 
6y 6y 
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6x2   6x3  -lj.-v        6x2   6x3  -2j.-. 
—r- —-r to   J (y)   - —~ —T- u)      (y) 
6y     öy11 6y     6yJ 

= -cost 
6x3  -12,-, 

_6y 
2 <*>    (y) + rsint 

Ox3   -21,-, 

_6y 
Y w     (y) 

■rcos     9 00     (y)   +rsin  8  OJ     (y) 

-  -12,-, 
-r OJ     (y) 

It is desirable to switch to physical components, which is 

easily accomplished as follows: 

z1(x) = -r/g^/g22ü3<12>(y) 

= -ÖJ< 12> (y) 

= - oj 
r8 

where g is the metric tensor 
<v< 

Here, the usual bracketed notation for physcial 

components is eliminated and, instead, the indices are 

subscripted and given in terms of the coordinate labels. 

The same procedure is employed to determine z2(x) and 

z3(x) as a function of ÖJ<ij>(y), and the results are pre- 

sented in Table 4.1. 
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The Cartesian components of the rate of deformation 

tensor are computed in terms of the cylindrical components 

following the same procedure.  First, one notes that the 

rate of deformation tensor is second order and defined by 

d. . = %(v. .+v. .) 

Table 4.1 

Cartesian Components of Vorticity Tensor Expressed 

in Terms of Cylindrical Components 

z1(x) = -wr( 

z2(x) = -sin0 üj  - cos0 tug 

z0(x) = cos0 (i),., - sin0 wfl 

As before, the Cartesian components can represent either 

covariant, contravariant or physical components and, hence, 

the contravariant transformation is valid: 

dij (x) = d13(x) 

= «Ü §*L  daß(y) (4.6) 
6ya 6ye 
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utilizing (4.2) and (4.6), the following expression may 

be determined for d22(x) 

_22  - 
d22 *x*   = d     *X* 

.2-2 o  x 

sy1^1 

6  x f—Td
lji5)-+^rrd2](y) 

6y 5y <5y 6y 

= cost 
6x2-5ll,-1, 6x2^12/r,, 
—r<ä     (y)+—rod     (y) 
Sy1 6yz 

-rsint 
~ -2 -2 6x  321,-.. 6xj22 ,-, 

6y Sy 

= cos29. d  (y)-rsinecose d  (y)-tsin6cos0 d  (y) 

+ ?2sin29 d22(y) 

Again converting to physical components via 

d<ii> = /q. . /g. • d -1 (no sum on i or j) 

one can determine 

d22(x) = cos20 drr - sin 29 drQ + sin 8 df 

The transformation of the remaining rate of deformation 

components follows an identical procedure and the results 

are summarized in Table 4.2. 
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The component transformations contained in Tables 

4.1 and 4.2, as well as, the angle changes can be substi- 

tuted into (2.1) and (2.2) to obtain 

6a _ 
6t wr6 ' *"""   wrz = -to + (sin0   ÖÖ    +cos8   äiQ   ) cos (a+9)cotß+ (sine   wflr T7. fc)Z O < 

-cose -ü ) sin (a+e)cotß+B[ (sine dQz-cose drz)sin(a 

+e)cotß+{%sin2e(drr-dQe)+cos26 drQ}cos2(a+9)+(sin9 drz 

+cose cL )cos(a+e)cotß+^{(dQQ-drr) 

+2sin26 drQ}sin2(a+6)] (4.7) 

Table 4.2 

Cartesian Components of Rate of Deformation Tensor 

Expressed in Terms of Cylindrical Components 

dn(x) = dzz 

d22(x) = cos2e drr-sin20 drQ+sin 9 d£ 

d33(x) = sin26 drr+sin26 dr9+cos 6 d£ 

d12(x) = cos! drz-sinl dQz 

d13(x)   = sine  drz+cose  dQz 

d23(x)   = Jssin2e(drr-dQ0)+cos2e  dr6 
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!!• = (sine üJ +cos6 CÖQ^) sin (a+Ö) +(-sine w£ 

+cos6 w  )cos(ct+e)+B[ (cos6 d_ -sine dfl )cos(a+9)cos2ß 

+^{32sin29(d -dQQ)+cos2e drQ}sin2 (a+6) sin2ß 

+(sin9 drz+cos6 dez)sin(a+e)cos2ß+%{(drr-dee)cos2e 

-2sin26 drQ}cos2(a+e)sin2ß+|(drr+de0)sin2ß]      (4.8) 

Since axisymmetry is assumed, (4.7) and (4.8) are indepen- 

dent of 9, and can be simplified by inserting any discrete 

value of 9, which results in the following: 

6a 
St  "     "re'lz"^^""   "rz ""    u     rz 

+ü_   coscccotß-^    sinacotß+B [-d    sinacotß 

+d  ecos2a+dQzcosacotß+%(dee-drr)sin2a] (4.9) 

■P = äL   sina+ü    cosa+B[d     cosacos2ß+%(d\   -dflfl)cos2asin2ß 
St 9z rz rz s-r     °° 

Ätä     +3..1sin2Rl (4.10) ■|(drr+dee)sin2ß] 



87 

These equations can be further simplified by noting that 

several vorticity and rate of deformation components are 

identically equal to zero due to axisymmetry.  For example, 

= 0 

Likewise, it can be shown that coQz * drQ , and dQz are 

also equal to zero.  Table 4.3 contains a complete descrip- 

tion of the physical components of w and d in terms of the 

velocities.  Cancelling out all of the terms which are 

identically zero in equations (4.9) and (4.10), 

4r = -w  sinacot$+B[-d sinacotß+Js(dfl0-d"  )sin2a]    (4.11) ot    rz rz oo  rr 

4f = CJ  cosa+B[5 cosacos23+^(5  -dflfl)cos2asin2ß ot   rz       rz rr  oo 

T(5rr-5ee)sin2ß] (4'12) 

These are the resulting equations describing fiber orien- 

tation relative to cylindrical coordinate reference axes 

in axisymmetric flow. 

To this point, a coordinate system which 
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translates with the fiber center and whose axes remain 

fixed in direction has been adopted.  As before, one may 

wish to describe fiber orientation relative to an inertial 

reference frame.  A prudent choice of an inertial refer- 

ence frame is one whose axes lie in the directions of the 

12   3 
y1 axes.  Thus, the cylindrical frame y , y , y is incor- 

porated where each y1 axis of this system lies in the same 

-i -1  -2  -3 
direction as the corresponding y axis of the y , y , y 

system.  In this inertial reference frame, (4.11) and 

(4.12) transform to 

DI =  -co
rz

sinacot2+B[-d
rz

sinacot^+J2(de6~drr)sin2a] <4-13> 

^£ =  oj    cosa+B[d     cosacos2ß+%(d_  -dflfl)cos2asin2ß 
Dt rz rz rr     öö 

+|(drr+deQ)sin2 3] <4-14> 

where 

~^t^ "     6t     + vr   6r     +     z   5z 

is the substantial time derivative.  The time derivative 

6( * vanishes when the boundary conditions are time inde- 
ot 

pendent. 
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With the above fiber orientation equations at 

hand, it is now possible to determine solutions for fiber 

orientation in axisymmetric flow. 

Table 4.3 

Physical Components of the Rate of Deformation 

and Vorticity Tensors in Axisymmetric Flow 

£3<ij> = % 

<5v_ 

6r 

5v. 

Sz 

5vr  5vz 

<5z    Sr 

d<ij> = 

Sv r 

Sr 

Sv   Sv 
h(—r \ 

Sz   Sr 

Sv   Sv 
0     jj (__£ + _|) 

Sz    Sr 

vr/r 

Sv 

6z 
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4.2    Analytical Solution for Fiber Orientation in 

Poiseuille Flow 

The pressure driven, steady, laminar,incompressible 

flow of a Newtonian fluid through a long, smooth round tube 

provides a flow situation from which an analytical solution 

for fiber orientation may be determined.  The geometry for 

this flow is depicted in Figure 4.3. For simplicity, a unit 

radius and unit flow are considered.  The velocity 

"R=l. *r 
unit 
flow 

Figure 4.3 Schematic of Poiseuille flow 

components are independent of 0, thus the problem is 

axisymmetric. 

The flow solution is not difficult to determine 

since the flow is unidirectional: 
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vr = v9 = 0 

v = 2(l-r2) 
z 

The only non-zero vorticity and rate of 

deformation components are 

dv 
ei  = -Js-^2- = 2r 
rz     dr 

dvz d  = 3s—3S. = -2r 
rz    dr 

Substituting into the fiber orientation equations 

(4.13) and (4.14), one obtains (for time independent 

boundary conditions): 

6a = r sinacotg    } (4>15) 
5z    1_r2 

6ß = r cosa (1_ß CQS 2ß) (4>16) 
6z    1-r2 

For large aspect ratios which exist in fibers, B is very 

nearly equal to unity (i.e.; for r =50, B=2499/2501). 

Consequently, one may conclude from (4.15) that 

I2 = o 6z 
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Hence,a is a constant and (4.16) becomes an ordinary dif- 

ferential equation in ß.  For fibers initially perpendic- 

ular to the flow streamline (i.e., 3=TT/2 at z=0) , the 

solution to (4.16) is 

cot $ = r tan 
-2r z cos a 

(1-r2)(r +l/rp) 
(4.17) 

The solution for in-plane fibers is plotted in Figure 4.4 

for a fiber aspect ratio of 50.  A comparison of Figures 

3.2 and 4.4 reveals that the in-plane fibers show identi- 

cal orientation behavior with in-plane fibers in plane 

Poiseuille flow.  This is an expected result since in- 

plane fibers experience identical fluid deformations and 

rotation in both flows. 

Equation (4.17) provides a known analytical 

solution for fiber orientation in an axisymmetric flow 

although it is necessarily restricted to a particular 

initial fiber orientation.  Nevertheless, it can be used 

to check the validity of the results predicted by the 

numerical scheme. 

To complete the development of the fiber 

orientation scheme, orientation parameters must be deter- 

mined for non-planar orientation states.  This is accom- 

plished in the next section. 
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4.3    Orientation Parameters for Non-Planar Fibers 

In dealing with axisymmetric flows, the planar 

fiber orientation assumption has been lifted.  Thus the 

orientation distribution becomes a function of two angles 

as shown in Figure 4.5; viz, 

n = n(y,?) 

such that 

IT TT/2 

n(Y,S)siny dy d£ = 1 

o o 

The angle L,  is the planar angle defined in Section 3.4 

while Y is an axial angle.  Both y and ? are measured 

from principal material axes.  The distributions are 

assumed to have the following symmetries: 

n(Y/C) = n(Y+7T,S) 

n(Y/£) = n(-Y/C+T) 

n(Y/C) = n(Y»-C) 

Here, the first two symmetries reflect the fact that the 

orientation angles are not unique and the last symmetry 
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Figure 4.5 Angle descriptors for orientation density 
function 

states that the distributions in t, is symmetric about the 

2 axis. If one further assumes that the orientation den- 

sity function is separable, i.e., 

n(y,£) = n1(y)n2(?) 

then McGee [14] has shown that the following parameters 

relating fiber orientation to the material properties 



96 

result: 

TT/2 

f = 2 
P 

n2(c)cos ? dj - 1 

9~ = 

TT/2 

n„ (c)cos ^ d£ - 3 

<— o 

f = a 

TT/2 

3 
L-o 

cos Y n, (y)siny dy - 1 /2 

r TT/2 

^a = 
cos Y n1(Y)sinY dy - 1 /4 

Here, f and g are the same orientation parameters de- 
P     P 

fined in Equations (3.8) and (3.9) , while f& and g& 

represent new orientation parameters which occur in the 

absence of the planar distribution assumption. 

The angles y and 5 must be related to the 

orientation angles a and ß in Figure 4.2.  McGee has deter- 

mined that the axial angle y can be measured from any of 

the principal material axes.  If the z axis is assumed to 

be a principal axis, then y simply represents ß.  With the 

z axis chosen as one principal axis, the direction asso- 

ciates with the modal value of a, a0, in the r-9 plane 

provides an estimate for a second principal axis.  The 
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procedure for calculating <j>| presented in Section 3.4, 

may also be utilized to determine a°.  The. principal 

axes are depicted in Figure 4.6.  The angle x,  is simply 

related to a by 

c  = a-a° 

principal 
direction 

principal 
direction 

Figure 4.6 Principal axes from which orientation 
distribution is measured 
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Incorporating the above assumptions, the 

orientation parameters may be expressed in terms of a and 

3 via 

f  = 2 
a°+tr/2 

n~ (a) cos (a-a°)da - 1 

a' 

9„ = q 

f. = 

8 
a°+fr/2 ~| 

n-(a) cos (a-a°)da - 3 

a" 

TT/2 

o 

TT/2 

cos 8 n^ßjsinß dß - 1 

cos 3. n1(ß)sinß dß - 1 

/2 

/4 

It remains to determine the orientation parameters 

in terms of a finite number of fibers.  For f  and gp , the 

derivation follows identically that presented in Section 

3.4 and the following expressions result: 

2 N   2 
f  = ~ Z cos^a,-o°) - 1 P  N.=1 

1 
gp = 5 

8 N    4 | I  cos (a.-a°)-3 
i=l 

where a. is the a-angle associated with the i  fiber and 

N is the total number of fibers. 
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To derive an expression for f  , one starts with 

the following approximation for the integral expression: 

3 Z n,(ß.)cos ß.sinß.Aß-1 
i=l x  1     1   1 

/2 (4.18) 

where the integral has been divided into k distinct inter- 

vals and ß. represents some value of ß in the i  interval. 
4-1«* 

Now, denoting m. as the number of fibers in the i  inter- 

val, it is possible to determine 

m. 
~ = n1(ßi)sinßiAß 

Inserting into (4.18), one obtains 

f  = a 
3   ■     2 
^ E m. cos ßi - 1 
i=l 

12 

or equivalently, 

fa = 
3 N   2 
H Z cos ß± - 1 
1=1 

12 

Following the same procedure, the following expression for 

g= may be derived 
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ga = 
5 N    4 2? Z cos e. - 1 
1=1 

/4 

The expressions relating the orientation parameters to the 

orientation of individual fibers are summarized in Table 

4.4. 

Table 4.4 

Orientation Parameters for Non-Planar 

Fiber Distributions 

2 N   2 f  = £ Z cos'(a.-a°) - 1 
P  Ni=1     i 

9p = 5 
| E cos4(a.-a°) - 3 
Ni=l 

3 N   2 4 Z cosV - 1 
Ni=l    X 

/2 

?a = 
5 N   4 § Z cos ß± - 1 
i=l 

/4 
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4.3.1  Random Fiber Orientation 

A random fiber orientation state occurs when the 

orientation parameters are all equal to zero.  Table 4.5 

lists the orientation angles for ten fibers which lead to 

a random orientation distribution.  These orientation 

angles are used in the subsequent examples to simulate ini- 

tially random fiber distributions. 

Table 4.5 

Orientation Angles for Ten Randomly Oriented Fibers 

3, rad a, rad 

0.314 0.942 

-0.565 2.199 

-0.723 0.314 

0.880 1.571 

-0.942 2.827 

1.100 0.628 

1.225 1.885 

-1.257 2.513 

1.382 0.0 

-1.414 1.257 



102 

4.4    Numerical Solutions 

In this section numerical solutions for fiber 

orientation in axisymmetric flows are presented.  The first 

example involves the determination of the fiber orientation 

in Poiseuille flow, and the results are compared with the 

analytical solution developed in Section 4.2.  In a second 

example, the fiber orientation in a simulated disk molding 

operation is determined. 

4.4.1  Poiseuille Flow 

To check the numerical scheme, the numerical 

solution for fiber orientation in Poiseuille flow (see 

Figure 4.3) is determined.  The finite element mesh with 

associated boundary conditions to solve for the flow is 

presented in Figure 4.7.  The stream function, pressure 

and shear stress contours for the fluid mechanics solution 

are shown in Figures 4.8 through 4.10. 

Having ascertained the flow solution, the fiber 

orientation is determined.  A comparison of analytically 

and numerically predicted orientation is presented in 

Table 4.6 along the ty  =  9/16 streamline.  This streamline 

corresponds to the path r=0.5.  The agreement between the 

numerical and analytical values is excellent. 
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It is also of interest to plot the orientation 

parameter contours for • an initially random orientation dis- 

tribution. Reference to  Section  4.2 reveals  that the  a 

orientations  remain constant;   hence, one need not plot con- 

tours of a*, f  , and g .  Plots of f and g, are presented p      Jp a     a 

in Figures 4.11 and 4.12, respectively.  From these plots, 

one detects the presence of the boundary layer of aligned 

fibers parallel to the wall boundary in the region near 

the wall boundary. 

Table 4.6 

Comparison of Numerical  and Analytical  Solutions 
for  Fiber Orientation in Poiseuille  Flow along 

the  Streamline  41  =  9/16 

Initial Orientations      Numerical  Solutions    Analytical  Solutions 
8,                  a,                    8,                    a,              8, a, 

rad rad rad        rad rad rad 

0.5 1.571 0.0 2.16 0.0 2.16 0.0 

1.0 1.571 0.0 2.50 0.0 2.50 0.0 

1.5 1.571 0.0 2.69 0.0 2.68 0.0 

0.5 1.571 0.785 2.02 0.785 2.01 0.785 

1.0 1.571 0.785 2.33 0.785 2.33 0.785 

1.5 1.571 0.785 2.54 0.785 2.53 0.785 
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4.4.2  Simulated Disk Molding Operation 

A final example involves simulating an actual 

axisymmetric disk molding operation.  Figure 4.13 depicts 

the geometry for the problem.  In the usual manner, the 

flow solution is determined first.  The finite element 

mesh and associated boundary conditions for Newtonian flow 

are presented in Figure 4.14.  A constant velocity profile 

exists along the boundary where the fluid enters the domain 

simulating the effect of a plunger pushing the fluid.  The 

usual no-slip condition is employed along the wall bound- 

aries.  The normal velocity and shear stress vanish along 

the centerline.  The boundary condition along the exit 

boundary is the analytically determined solution for radial 

flow satisfying the continuity and Navier-Stokes equations. 

The resulting stream function, pressure, and shear stress 

contours are presented in Figures 4.15 through 4.17, 

respectively. 

With the flow solution at hand, the fiber 

orientation may be determined.  To gain a better visual 

perception of the type of orientation that occurs, ini- 

tially in-plane fibers (ot=0) are treated first.  Examina- 

tion of (4.11) reveals that in-plane fibers remain in-plane; 

hence, fiber plots can be drawn.  Figures 4.18 through 4.20 

present fiber plots along three streamlines:  one near 
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both wall boundaries in the disk section and one which 

runs through the disk center.  Several conclusions may be 

drawn from these in-plane fiber plots: 

(1) Rapid alignment of in-plane fiber occurs in 

the sprue section of all three streamlines. 

This is due to the very high normal stresses 

which exist in the converging flow. 

(2) In-plane fibers preferentially orient 

parallel to the flow streamlines near the 

wall boundaries in the disk. 

(3) In-plane fibers orient perpendicular to the 

flow streamlines in the center of the disk. 

Next, the orientation is determined for initial 

non-planar random orientation distributions.  Figures 4.21 

through 4.25 present the resulting contours of f .  From 

these figures, the following conclusions may be reached: 

(1) A very high degree of alignment in the 

z direction (f 2.0.9) occurs throughout 

the converging sprue section. 

(2) In the wall region in the disk, the fibers 

align perpendicular to the z direction 

(fa£-0.4) 

(3) In the center section of the disk, the 

distribution is moderately aligned in the 

z direction (f ^0.6) near the sprue, becoming 
a 
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widely dispersed (f -0). near the exit region 

of the flow. 

Contours of f are shown in Figures 4.26 through 
P 

4.29.  From these figures, one may conclude that, except 

for a strip in the central region of the disk, the a 

alignment is nearly perfect.  To ascertain the direction of 

a  alignment,; contours of a° are plotted in Figures 4.30 

and 4.31.  These figures reveal an in-plane alignment of 

fibers (a=0) in both the sprue section and wall regions. 

In the central region of the disk a moderate degree of 

orientation exists (f =0.6) with a varying mode angle. 

4.4.3  Comparison of Predicted and Actual Orientation 

From micrographs, Ellery [4] has determined the 

fiber orientation in axisymmetric disks under slow fill 

rates for glass reinforced phenolics.  Ellery found a high 

degree of fiber orientation parallel to the flow stream- 

lines in the wall region of the disk and a high degree of 

orientation in the "hoop" direction in the center section 

of the disk.  This experimentally determined orientation 

is depicted in Figure 4.32. 

A comparison of the experimentally observed 

orientation with the numerical prediction reveals a very 

good agreement in the wall region of the disk.  In the 
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center section, however, the numerical scheme does not 

predict a high degree of hoop direction reinforcement. 

Table 4.7 presents the orientation of ten initially ran- 

domly oriented fibers at the beginning of the disk section 

and at the exit location along the streamline which tra- 

verses the center section of the disk.  It is seen that the 

fiber orientation is predominantly in-plane at the begin- 

ning of the radial section, and thus hoop direction align- 

ment cannot occur.  However, those fibers which do have a 

significant degree of out-of-plane tilting at the entrance 

to the disk do tend to orient in the hoop direction.  If 

one introduces a fiber tilted 45° out-of-plane at the en- 

trance to the disk, then upon reaching the exit section 

the fiber has achieved a hoop direction alignment.  Thus 

the discrepancy between experimentally observed and numer- 

ically predicted orentation may be explained by postulating 

that fiber interactions cause a significant degree of out- 

of-plane tilting in the entrance region of the disk, and 

the orientation mechanisms are able to orient the resulting 

non-planar fibers in the hoop direction. 
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Table 4.7 

Numerically Predicted Orientations of Individual 

Fibers along Center Streamline in an 

Axisymmetric Disk 

(3) 

(I)» 

(1) 
Initial 
Orientation, 

rad 

(2) 
Orientation at Begin- 
ning of Radial Section 

rad 

(3) 
Final 

Orientation, 
rad 

3 a 3 a 3 a 

0.314 0.942 -1.99 3.1 -2.79 2.5 

-0.565 2.199 -1.92 3.14 -2.87 3.10 

-0.723 0.314 2.05 0.18 2.38 1.26 

0.880 1.571 -2.16 3.13 -2.87 3.03 

-0.942 2.827 -2.50 3.04 -2.78 2.34 

1.100 0.628 2.08 0.19 2.38 1.27 

1.225 1.885 1.33 3.12 0.324 2.75 

-1.257 2.513 2.18 0.01 2.87 0.04 

1.382 0.000 2.18 0.000 2.87 0.000 

-1.414 1.257 -1.82 3.02 -2.37 1.89 

-~ _ 1.571 0.785 1.63 1.54 
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CHAPTER 5.  CONCLUSIONS 

A numerical method has been developed for 

determining the fiber orientation in arbitrary plane and 

axisymmetric flows.  The resulting fiber dispersion is 

depicted by orientation parameters, which relate the degree 

of fiber alignment to the material properties.  In axisym- 

metric flow, non-planar distributions are treated while 

only planar distributions are allowed in plane flow.  The 

validity of the numerical method was proved by comparing 

numerical results with known analytical solutions. 

Several examples were considered.  In Poiseuille 

flow, a distinct boundary layer of aligned fibers parallel 

to the flow streamlines was shown to exist in the wall re- 

gion.  This prediction correlates well with experimental 

observations.  It was determined that the presence of a 

circular inclusion lead to boundary layer of aligned fibers 

adjacent to and downstream from the insert.  A prediction 

for the fiber orientation in an axisymmetric disk was 

established.  The prediction correlated well with experi- 

mental observations in the wall region of the disk and the 

discrepancy in the central region could be explained by 
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the failure of the theory to account for fiber interactions. 

Several extensions to the theory are possible.  A 

more elaborate procedure to determine the principal mate- 

rial axes in non-planar distributions should be developed. 

In the axisymmetric flow examples presented in Section 4.4, 

it was assumed that the z axis represented a local princi- 

pal material direction.  Clearly, this assumption in in- 

valid for many flows, and a procedure needs to be developed 

to determine the principal axes from the orientations of 

a finite number of fibers.  One possible method of attack 

is to assume that the peak in the orientation density func- 

tion defines one principal axis and. develop a pro- 

cedure to determine the peak.  Having found one principal 

axis, the problem is no more difficult than the determin- 

ation of the principal axes in a planar distribution. 

A second extension involves the determination of 

the effect of the fiber orientation on the viscosity of 

the suspension.  If this effect is significant, then an 

iterative scheme would be necessary to determine the 

fiber orientation, as duscussed in Section 2.1. 

Givler [5] has discussed several other possible 

extensions to the theory, including studying three- 

dimensional and transient flows and determining the 
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orientation equations for a viscoelastic suspending medium. 

These extensions enable more accurate simulation of the 

molding processes. 



REFERENCES 

1. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., 
Transport Phenomena, John Wiley and Sons, 1960. 

2. Crochet, M. J., Finite Element Methods for Solids and 
Fluids, unpublished. 

3. Denn, M. M., Process Fluid Mechanics, Prentice Hall, 
1980. 

4. Ellery, S. A., "Composition Induced Fiber Orientations 
and a Determination of the Flow Processes in Transfer 
and Injection Molded Thermosets," Center for Composite 
Materials, Internal Report, Univ. of Delaware, 1982. 

5. Givler, R. C., "Numerically Predicted Fiber Orienta- 
tions in Dilute Suspensions," Master's Thesis, Univ. 
of Delaware, 1981. 

6. Goettler, L. A., Leib, R. L. and Lambright, A. J., 
"Short Fiber Reinforced Hose - A New Concept in 
Production and Performance," Rubber Chemistry and 
Technology, 52, no. 4, 1979. 

7. Goldsmith, H. and Mason, S. G., in Rheology; Theory 
and Application, edited by Eirich, F. R., Academic 
Press, 1967. 

8. Hawkins, G. A., Multilinear Analysis for Students in 
Engineering and Science, John Wiley and Sons, 1963. 

9. Jeffery, G. B., "The Motion of Ellipsoidal Particles 
Immersed in a Viscous Fluid," Proc. Roy. So.c. , A 102, 
161, 1922. 

10. Maschmeyer, R. 0. and Hill, C. T., "Rheology of 
Concentrated Suspensions of Fibers in Tube Flow," 
Trans. Soc. Rheol., 21, 183, 195, 1977. 

11. McCullough, R. L., "Anisotropie Behavior of Crystal- 
line Polymers," Treatise on Materials Science and 
Technology, 10, part B, 453, 1977. 

138 



139 

12. McCullough, R. L., Introduction to the Statistical 
Analysis of Experimental Data, unpublished. 

13. McCullough, R. L., Pipes, R. B. and Whitney, J. M. , 
Analytical Methods for Composite Materials: 
Thermoelastic, Transport and Strength Properties, 
unpublished. 

14. McGee, S., "The Influence of Microstructure on the 
Elastic Properties of Composite Materials," Ph.D. 
Thesis, University of Delaware, 1982. 



APPENDIX 1 

INVESTIGATION OF THE SYMMETRY OF AN 

ORIENTATION DISTRIBUTION 

In developing the orientation parameters, the 

orientation distribution has been assumed to be symmetric 

about the mode.  In this appendix, the validity of this 

assumption is investigated for planar distributions in 

the plane Poiseuille flow example in Section 3.5.1.  A 

random fiber orientation distribution is input at the be- 

ginning of the 4J=-0.29 streamline and the skewness of the 

distribution is studied at selected locations downstream. 

The degree of skewness is described by the coefficient of 

skewness (a3) defined by 

a3 = M3/(M2)
3/2 

where M~ and M-. are the second and third central moments, 

respectively, defined by 

N 
Mi4E (h-~ ~h]± 

j=l    3 
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The coefficient of skawness is determined for varying 

numbers of fibers. 

Figures Al.l, Al.2, and Al.3 depict the 

orientations of 100 initially random fibers at 0.5, 1.0, 

and 1.5 inches downstream, respectively, from the random 

end.  Also presented in these figures are the numerically 

computed mode angles.  In Figure Al.4, the magnitude of 

a-, is plotted as a function of the number of fibers at 

these same locations.  It is readily observed that a3 

decreases to small values as the number of fibers is in- 

creased.  Since the orientation distribution function is 

more accurately modelled by larger numbers of fibers, it 

may be concluded that the assumption of symmetric distri- 

butions is valid for this example.  While the conclusions 

from this specific example cannot be extended to other 

flows, the results do lend credence to the assumption 

of symmetric distributions. 
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Figure Al.l Distribution of 100 initially random fibers 
in plane Poiseuille flow at a location 0.5 
inches downstream along the i^=—0.29 streamline 
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Figure Al.2  Distribution of 100 initially random fibers in 
plane Poiseuille flow at a location 1.0 inch 
downstream along the ip=-0.29 streamline 
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Figure Al.3  Distribution of 100 initially random fibers in 
plane Poiseuille flow at the location 1.5 
inches downstream along the ^=-0.29 streamline 
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APPENDIX 2 

INVESTIGATION OF NUMBER OF FIBERS NEEDED TO 

ACCURATELY PREDICT ORIENTATION PARAMETERS 

In using the numerical orientation model, one 

needs an estimate of how many fibers are needed to ade- 

quately model the distribution and thus give accurate 

estimates for both the mode angle and orientation param- 

eters.  Obviously, if too few fibers are used, grossly 

inaccurate results may be obtained.  On the other hand, 

too many fibers leads to wasted computer time. 

For this investigation, orientations were studied 

at selected locations along the I|J=-0.29 streamline in the 

plane Poiseuille flow example presented in Section 3.5.1. 

These locations are identical to those studied in Appendix 

1.  Plots of K , f  , and g as a function of the number 

of fibers are presented in Figures A2.1 through A2.3, 

respectively, for locations 0.5, 1.0, and 1.5 inches 

downstream from the initial point in the streamline, where 

a random orientation state is input.  It can be seen from 

the figures that all parameters attain fixed values at all 

locations when the number of fibers exceeds 50.  To 
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determine the dependence on numbers of fiber for fewer than 

50 fibers, magnified plots are presented in Figures A2.4 

through A2.6.  From these figures, one can conclude that 

in all cases, as few as 10 fibers provide accurate predic- 

tions for all the parameters.  This result is very encour- 

aging in light of the fact that it is desirable to work 

with as few fibers as possible. 
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